## **NEWS RELEASE**



20 February 2025

# NEW COPPER-GOLD PORPHYRY AND IOCG TARGETS CONFIRMED AT CHOCOLATE PROJECT, PERU

Sample grades of 4.92% copper and 2.47g/t gold

#### **HIGHLIGHTS**

- Rock geochemical assays from magnetic drone survey data<sup>1</sup> reveal two copper porphyry and two vein-hosted iron oxide copper gold ("IOCG") targets at Chocolate<sup>2</sup>.
- · Highlight geochemical assays from rock samples include:

Porphyry Target 1: 0.71% Cu and 0.60g/t Au (sample 17423)
 IOCG Target 1: 4.92% Cu and 2.47 g/t Au (sample 17397)
 Porphyry Target 2: 1.92% Cu and 0.03 g/t Au (sample 17402)
 IOCG Target 2: 2.78% Cu and 0.21 g/t Au (sample17410)

- All rock samples taken and assayed by ALS Global laboratories in Lima, Peru.
- Further geophysics and geochemistry surveys will be undertaken to refine and prioritise drill targets.
- Priority projects, Ilo Este and Chancho al Palo, have advanced, with a drilling permit already granted by Peru's Ministry of Energy and Mines ("MINEM") for Chancho al Palo. The remaining approvals required to commence drilling are expected imminently.

Solis Minerals Limited (ASX: SLM, TSX.V: SLMN) ("Solis" or the "Company"), a Latin American-focused copper-gold explorer, is pleased to provide an update on exploration activities at the Chocolate Project in southern Peru (Figure 1).

#### Executive Director, Mike Parker, commented:

"As our exploration teams continue investigating the extensive land package at Chocolate, we are discovering increasing evidence of mineralisation exposed at surface, with geophysical data indicating the potential for large mineral systems.

Surface copper and gold grades, including IOCG sample 17397 (4.92% Cu and 2.47 g/t Au), highlight the exciting exploration potential as we refine our plans for further work at Chocolate.

Even at this early exploration stage, we believe that Chocolate's position between Ilo Este and Chancho Al Palo, along the same geological trend, is already enhancing the prospectivity of our Coastal Belt target zone.

We will continue systematic exploration to identify drill targets and expand our highly prospective pipeline of drilling opportunities in the area."

ASX: SLM

TSX.V: SLMN

OTC: WMRSF

Address: 3, 32 Harrogate Street, West

Leederville WA 6007

**Phone:** 08 6117 4795 for Australia office (604) 209-1658 for Canada office

www.solisminerals.com

Email: info@solisminerals.com.au

Media Contact:

Jason Mack

jason@whitenoisecomms.com

Phone: +61 400 643 799

<sup>&</sup>lt;sup>1</sup> ASX:SLM announcement "Guaneros Drone Magnetometry and Geochemistry Identifies Targets", 17 September 2024.

<sup>&</sup>lt;sup>2</sup> Previously referred to as the Guaneros Project.



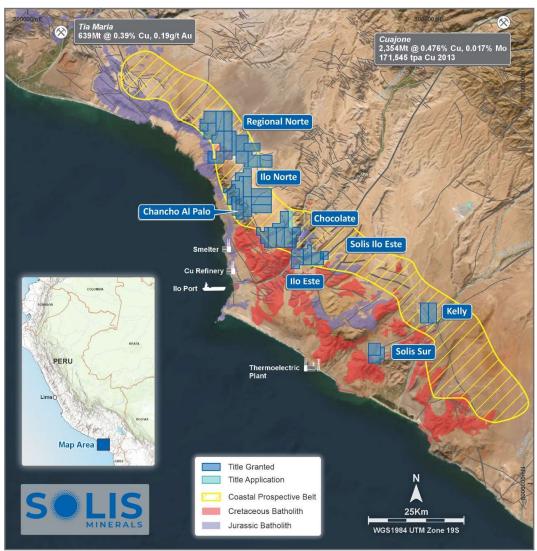
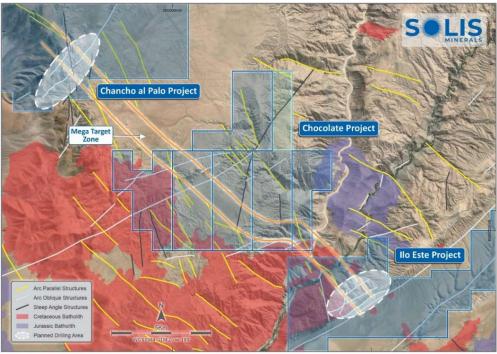



Figure 1: Porphyry Coastal Belt of Peru in the Ilo region of Moquegua showing Solis' exploration project areas including Chocolate, Ilo Este, and Chancho Al Palo. Values for Tia Maria and Cuajone sourced from Southern Copper (https://southerncoppercorp.com/).

#### Summary


Geochemical assays from reconnaissance rock sampling and processing of a 2024 magnetometer drone geophysical survey have revealed four exploration targets to date – two with copper porphyry style signatures, and two with vein-hosted IOCG style signatures (Figure 3). Only 10% of the project area has been investigated to date and mapping and systematic sampling is continuing, guided by the magnetometry anomalies.

The geology at Chocolate is similar to the geology at Solis' neighbouring projects of Ilo Este and Chancho Al Palo which, with Chocolate, form a "mega-target" zone of 20km length which is predominately controlled by Solis (Figure 2). A western granodiorite coastal batholith is in contact with the Chocolate Formation, which forms a prospective belt for porphyry and IOCG mineralisation (see Figure 1). Additionally, and similar to Ilo Este, another granodiorite batholith is in the east of the area and is prospective, being the area of Porphyry Target 2 described in this release. Prominent cross faults, recognised as favourable loci for copper and gold mineralisation, also traverse the area aiding targeting and exploration strategy. Interpretation of magnetometry data has revealed significant zones of magnetic anomalies with associated interpreted alteration haloes. Results to date show a relationship between rock geochemistry and magnetic anomalies for the two porphyry targets identified (Figure 5). The whole Central Magnetic anomaly, parts of the Eastern Magnetic anomaly, and a large part of the alteration zones are highly prospective and have yet to be tested. Associated copper and gold values in the porphyry areas are similar to Ilo Este,



7km south-east along strike, which supports the characteristics of the mega-target zone.

As mapping and geochemistry advance, the more prospective anomalies are being evaluated for follow up with Induced Polarisation ("IP") geophysical surveys leading to drill testing in late 2025.



**Figure 2:** 20km mega-target zone showing Chocolate bracketed between drill-ready targets at Chancho Al Palo and Ilo Este. Similar structures across the project areas, including arc-oblique structures (cross faults).

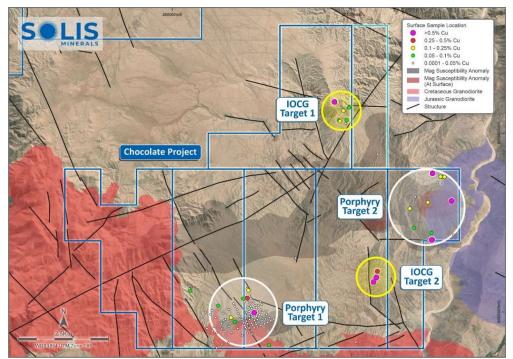



Figure 3: Chocolate Project exploration licences showing Cu rock geochemistry, magnetic susceptibility anomaly high from MVI, and district geology of the granodiorites. Two copper-gold porphyry target zones (white circles) and two IOCG target zones (yellow circles) have been identified by rock geochemistry to date.





Figure 4: Sample 17397, easting 264520, northing 8065874, quartz vein zone with specularite, CuOx – malachite and chalcopyrite. Cu 4.92%, Au 2,47 g/t

#### **Chocolate Project**

The Chocolate Project consists of seven exploration concessions totalling 6,100Ha (six concessions granted of 5,700Ha and one concession in application of 400Ha) situated on the prospective Coastal Belt of southern Peru between drill targets of llo Este and Chancho Al Palo (Figure 3). The ground was staked in May 2024, and Solis' exploration teams rapidly initiated reconnaissance mapping and geochemistry surveys.

A magnetometer drone geophysical survey was carried out in August 2024, and data collected was processed using Magnetic Vector Inversion ("MVI") techniques. This is a method used to directly model the vector of magnetization based on anomalous Total Field Magnetic Intensity data. The method allows the modelling optimization process to orient the direction of magnetization to best fit the observed data. It is now a primary tool in exploration targeting and is particularly useful where cover rocks exist. In porphyry exploration, the development of the magnetic mineral magnetite associated with potassic alteration is a useful vector to identify prospective areas. Conversely, the absence of magnetite can be due to alteration processes associated with porphyry systems and magnetic lows are useful targeting areas. Remanent magnetism is produced by magnetic minerals locked in rocks by alteration processes and in certain instances is a useful tool to assess alteration haloes around, in this case, intrusive rocks.

To date, 151 rock samples have been taken and assayed at ALS Global laboratories in Lima, Peru.



Four results from these samples have been previously released<sup>3</sup>. Full results are presented in Table 1 of Appendix 1. The rock geochemistry exploration program has covered an area of approximately 600Ha, or 10% of the Chocolate Project (Figure 3). It is estimated that approximately 4,500Ha or 75% of the Project area is free of blanket cover by recent (Quaternary) sediments and is suitable for geochemistry surveys4.

#### **Rock Geochemistry Anomalies**

Four target areas have been identified (Figure 3).

- **Porphyry Target 1**
- **IOCG Target 1**
- **Porphyry Target 2**
- **IOCG Target 2**

The assay results for each target area are displayed in the tables below, along with a summary of the geology.

In Tables 1-4 following, CuOx refers to copper oxide minerals, usually malachite and azurite. Specularite is a form of iron oxide commonly found in IOCG environments. Volcaniclastic unit descriptor refers to a package of undifferentiated units associated with extrusive rocks. Where units are clearer they are identified, ie, tuff.

#### **Porphyry Target 1**

This area consists of locally outcropping volcaniclastic rocks of the Chocolate Formation with zones of tourmaline breccias and hornfels developed in structures. The breccias have been observed with Cu oxides and associated Au enrichment and are considered to be emanating from a deeper or more lateral mineralisation (to north). 112 samples were taken of which nine have values >500ppm Cu (Table 1). Structures with associated geochemical anomalies occur sporadically over a circular area of approximately 750m diameter (Figure 3). North and east of the area is covered by Quaternary sediments. Much of the area is blanketed by a barren tuff unit. The area is interpreted as indicative of the margin of porphyry-style mineralisation, with the main zone of interest being to the northeast, under cover and away from the granodiorite batholith in the south and west.

Table 1: Geochemical sample assays reporting >500ppm Cu in Porphyry Target 1, Chocolate Project.

| Zone     | Sample No.         | Easting | Northing | Elevation<br>m | Description                            | Au<br>ppm | Cu % |
|----------|--------------------|---------|----------|----------------|----------------------------------------|-----------|------|
|          | 17423              | 262280  | 8059995  | 1112           | Volcaniclastics with CuOx in fractures | 0.602     | 0.71 |
|          | 17382 <sup>5</sup> | 262120  | 8060419  | 1132           | Hornfels with potassic alteration CuOx | 0.166     | 0.37 |
|          | 17381 <sup>6</sup> | 262100  | 8060641  | 1107           | Tourmaline breccia in hornfels         | 0.112     | 0.14 |
| Porphyry | 17536              | 261638  | 8059860  | 1119           | Brecciated volcaniclastic CuOx         | 0.011     | 0.14 |
| Target 1 | 17524              | 261281  | 8060192  | 1103           | CuOx in brecciated volcaniclastics     | 0.010     | 0.08 |
|          | 17490              | 262692  | 8059092  | 1057           | Tuff, CuOx in fractures                | 0.013     | 0.07 |
|          | 17462              | 261970  | 8060389  | 1116           | Sandstone, CuOx in quartz fractures    | 0.005     | 0.06 |
|          | 17549              | 260497  | 8060606  | 1131           | Sandstone, CuOx in quartz fractures    | 0.005     | 0.06 |

<sup>&</sup>lt;sup>3</sup> ASX:SLM announcement "Guaneros Drone Magnetometry and Geochemistry Identifies Targets", 17 September 2024.

<sup>&</sup>lt;sup>4</sup> ASX:SLM announcement "Guaneros Drone Magnetometry and Geochemistry Identifies Targets", 17 September 2024. <sup>5</sup> ASX:SLM announcement "Guaneros Drone Magnetometry and Geochemistry Identifies Targets", 17 September 2024.

<sup>&</sup>lt;sup>6</sup> ASX:SLM announcement "Guaneros Drone Magnetometry and Geochemistry Identifies Targets", 17 September 2024.



|  | 17200 | 262095 | 8060396 | 1133 | Volcanisclastics, silicification CuOx | 0.025 | 0.06 |  |
|--|-------|--------|---------|------|---------------------------------------|-------|------|--|
|--|-------|--------|---------|------|---------------------------------------|-------|------|--|

For the complete sample locations and assay details from Porphyry Target 1, refer to Appendix 1.

#### **IOCG Target 1**

This zone is characterised by the presence of patches and veins of specularite-hematite, some associated with Cu and Au, in epidote altered volcaniclastic rocks. 12 samples were taken of which 4 have values >0.1% Cu (Table 2 and Figure 4). The zone, of dimensions 700m N-S and 500m E-W, is only partially exposed and appears to lie just north of a cross-fault. It is considered to be marginal to porphyry-type mineralisation, and largely structurally controlled.

Table 2: Geochemical sample assays reporting >0.1% Cu in IOCG Target 1, Chocolate Project.

| Zone             | Sampl<br>e No. | Easting | Northing | Elevation<br>m | Description                                          | Au<br>ppm | Cu<br>% |
|------------------|----------------|---------|----------|----------------|------------------------------------------------------|-----------|---------|
|                  | 17397          | 264520  | 8065874  | 1309           | Quartz vein zone,<br>specularite and<br>chalcopyrite | 2.470     | 4.92    |
|                  | 17399          | 264769  | 8065628  | 1246           | Quartz vein with CuOx                                | 0.041     | 0.24    |
|                  | 17472          | 264674  | 8065339  | 1259           | Crystal tuf with chalcopyrite disseminations         | 0.003     | 0.20    |
|                  | 17396          | 264518  | 8065875  | 1310           | Quartz veining                                       | 0.228     | 0.11    |
|                  | 17395          | 264513  | 8065899  | 1312           | Crystal tuf with chalcopyrite and CuOx               | 0.136     | 0.08    |
| IOCG<br>Target 1 | 17401          | 264926  | 8065712  | 1279           | Fine-grained tuff CuOx                               | 0.005     | 0.08    |
| Imgs             | 17432          | 264858  | 8065368  | 1208           | Specularite and hematite quartz vein 0.3m            | 0.026     | 0.07    |
|                  | 17474          | 264648  | 8065362  | 1260           | Hornfels, CuOx in fractures                          | 0.013     | 0.06    |
|                  | 17411          | 264728  | 8065680  | 1267           | Specularite vein, quartz in patches                  | 0.099     | 0.03    |
|                  | 17475          | 264841  | 8065273  | 1198           | Specularite and hematite vein 0.5m                   | 0.003     | 0.01    |
|                  | 17473          | 264673  | 8065352  | 1261           | Specularite and hematite vein 0.5m                   | 0.006     | 0.01    |
|                  | 17398          | 264699  | 8065709  | 1267           | Quartz veining                                       | 0.007     | 0.01    |

For the complete sample locations and assay details from IOCG Target 1, refer to Appendix 1.

#### **Porphyry Target 2**

The zone is characterized by porphyry-style alteration and lithologies in an area partially covered by recent sediments. 21 samples were taken of which 9 have values >0.1% Cu (Table 3 and Figure 3). Altered carbonates from the regional volcaniclastic Chocolate Formation are present with anomalous Cu and Au values. Some anomalous intrusives are present within a hornfels halo. The area lies west of, or partially on, the Jurassic granodiorite batholith in a favourable geological position similar to that seen at Ilo Este. Zone dimensions are 1.75 km N-S and 1.0 km E-W based on the anomalies from reconnaissance sampling.

Table 3: Geochemical sample assays reporting >0.1%. Cu in Porphyry Target 2, Chocolate Project.

| Zone                 | Sampl<br>e No. | Easting | Northing | Elevatio<br>n (m) | Description                      | Au<br>ppm | Cu % |
|----------------------|----------------|---------|----------|-------------------|----------------------------------|-----------|------|
|                      | 17402          | 267255  | 8063882  | 934               | Chloritised tuff, CuOx fractures | 0.030     | 1.92 |
| Porphyry<br>Target 2 | 17436          | 267788  | 8063113  | 761               | Microdiorite with CuOx fractures | 0.060     | 1.26 |
|                      | 17486          | 267231  | 8062023  | 533               | Altered carbonate with           | 0.409     | 1.03 |



|       |        |         |      | CuOx diss and fractures                        |       |      |
|-------|--------|---------|------|------------------------------------------------|-------|------|
| 17485 | 267246 | 8062028 | 532  | Altered carbonate with CuOx diss and fractures | 0.229 | 0.81 |
| 17435 | 267125 | 8063074 | 1033 | Chloritised tuff, CuOx fractures               | 0.005 | 0.25 |
| 17477 | 266622 | 8062899 | 940  | Hornfels with CuOx fractures                   | 0.050 | 0.18 |
| 17404 | 267481 | 8063789 | 810  | Stockwork CuOx veins in intrusive(?)           | 0.038 | 0.16 |
| 17403 | 267503 | 8063784 | 809  | Hornfels with CuOx fractures                   | 0.011 | 0.12 |
| 17405 | 267586 | 8063782 | 761  | Hornfels with CuOx structures                  | 0.068 | 0.12 |

For the complete sample locations and assay details from Porphyry Target 2, refer to Appendix 1

#### **IOCG Target 2**

The zone is 350m long and consists of a narrow series of steeply- dipping specularite-quartz veins, 0.4-1.5m wide, cutting volcaniclastic rocks of the Chocolate Formation. Little wallrock or zonal alteration was observed. 6 samples were taken of which 5 have values >0.1% Cu (Table 4). It is located on the southern margin of Porphyry Target 2 (Figure 2).

Table 4: Geochemical sample assays reporting >0.1% Cu in IOCG Target 2, Chocolate Project.

| Zone        | Sample<br>No. | Eastin<br>g | Northi<br>ng | Elevatio<br>n m | Description                                      | Au ppm | Cu % |
|-------------|---------------|-------------|--------------|-----------------|--------------------------------------------------|--------|------|
|             | 17410         | 265689      | 80609<br>80  | 1030            | Quartz vein with specularite,<br>CuOx            | 0.211  | 2.78 |
|             | 17406         | 265611      | 80608<br>52  | 1027            | Quartz vein with specularite,<br>CuOx 40cm wide  | 0.049  | 2.29 |
| IOCG        | 17481         | 265718      | 80611<br>49  | 1016            | Quartz vein with specularite,<br>CuOx            | 0.657  | 0.29 |
| Target<br>2 | 17408         | 265677      | 80609<br>41  | 1021            | Quartz vein with specularite,<br>CuOx 150cm wide | 0.205  | 0.23 |
|             | 17407         | 265654      | 80609<br>31  | 1023            | Quartz vein with specularite,<br>CuOx 70cm wide  | 0.080  | 0.11 |
|             | 17409         | 265677      | 80609<br>41  | 1021            | Quartz vein with specularite,<br>CuOx            | 0.365  | 0.05 |

For the complete sample locations and assay details from IOCG Target 2, refer to Appendix 1

#### **MVI Results and Relationship with Rock Geochemistry**

Results of the MVI and geochemistry combined (Figure 5) show a distinct relationship between porphyry targets and magnetic susceptibility highs.

In Porphyry Target 1, the main geochemistry anomalies are north of the magnetic high (Southern Mag anomaly) in an area that has a weak remanent magnetic response. As mapped on the ground, hornfels associated with faulting carries some copper oxide and gold mineralisation and may be reflecting part of the remanent response. Tourmaline breccias are observed that support the presence of intrusives being emplaced in the area. It is known that a magnetic low is formed in this area between the Southern and Central Mag anomalies and this will be a focus of exploration going forward despite the limitations imposed by some barren tuff cover rocks and encroaching recent sediments. Follow-up mapping and sampling will continue at this target to define future IP surveys where feasible (less cover) and drill targets.



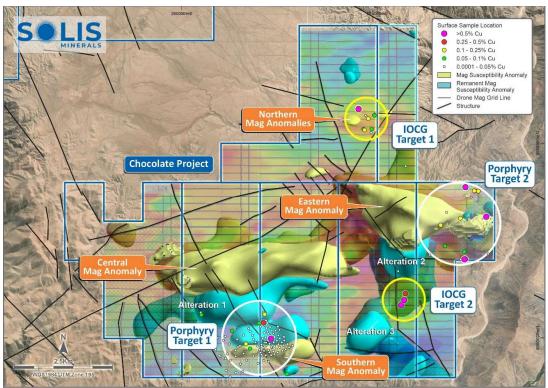



Figure 5: Susceptibility magnetic anomalies (Mag Anomalies - yellow) and remanent magnetic anomalies (Alteration Anomalies - blue) in relation to rock geochemistry targets.

In Porphyry Target 2, the relationship between the magnetic susceptibility high (Eastern Mag anomaly) and the geochemistry is better represented due to better exposure. Geochemical anomalies generally surround the zone where the mag high surfaces. Some mineralised intrusive rocks and stockwork were observed indicating the porphyry nature of the anomalies. It should be noted that the Eastern Mag anomaly appears to be constrained by faulting on its western margin, and probably on its south-eastern margin with an associated alteration zone. The relationship between faulting and mineralisation is considered important in the area as evidenced at Ilo Este.

Follow-up mapping and sampling will continue at this target to define future IP surveys and drill targets.

IOCG Target 1 is associated with minor magnetic anomalies. In the area, these zones are typically constrained to structures. There is a susceptibility anomaly (Northern Mag anomaly) close to this target, and an alteration zone on strike 1km to the north. Both these areas will be investigated.

IOCG Target 2 is situated in a zone 2km south of Porphyry Target 2 and the Eastern Mag anomaly. It is considered that these mineralised veins may be lateral expressions of associated porphyry mineralisation to the north. They are situated in a zone of deep remanent magnetism that may be reflecting alteration from the intrusives. Given the higher-grade nature of the results, this area will be investigated for vein swarms or other potential increases in size.

It is important to note that the Central Mag anomaly, the largest anomaly of dimensions  $5 \, \text{km} \times 1 \, \text{km}$ , and its associated remanent mag zone to the south remain un-investigated, as does the western margin of the Eastern Mag anomaly. These areas will be investigated as a priority to establish the amount of outcrop and sampling possible.



#### **ENDS**

This announcement is authorised by Mike Parker, Executive Director of Solis Minerals Ltd.

Contact Mike Parker

Executive Director
Solis Minerals Limited
+61 8 6117 4795

Media & Broker Enquiries:

Fiona Marshall & Jason Mack White Noise Communications fiona@whitenoisecomms.com jason@whitenoisecomms.com

+61 400 512 109

Neither the TSX Venture Exchange nor its Regulation Service Provider (as the term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy of accuracy of this news release.

#### **About Solis Minerals Limited**

Solis Minerals is an emerging exploration company, focused on unlocking the potential of its South American copper portfolio. The Company is building a significant copper portfolio around its core tenements of Ilo Este and Ilo Norte and elsewhere in the Coastal Belt of Peru and currently holds 81 exploration concessions for a total of 69,200Ha (46 concessions granted with 35 applications in process).

The Company is led by a highly-credentialled and proven team with excellent experience across the mining lifecycle in South America. Solis is actively considering a range of copper opportunities. South America is a key player in the global export market for copper and Solis, under its leadership team, is strategically positioned to capitalise on growth the opportunities within this mineral-rich region.

#### **Forward-Looking Statements**

This news release contains certain forward-looking statements that relate to future events or performance and reflect management's current expectations and assumptions. Such forward-looking statements reflect management's current beliefs and are based on assumptions made and information currently available to the Company. Readers are cautioned that these forward-looking statements are neither promises nor guarantees and are subject to risks and uncertainties that may cause future results to differ materially from those expected, including, but not limited to, market conditions, availability of financing, actual results of the Company's exploration and other activities, environmental risks, future metal prices, operating risks, accidents, labour issues, delays in obtaining governmental approvals and permits, and other risks in the mining industry. All the forward-looking statements made in this news release are qualified by these cautionary statements and those in our continuous disclosure filings available on SEDAR+ at www.sedarplus.ca. These forward-looking statements are made as of the date hereof, and the Company does not assume any obligation to update or revise them to reflect new events or circumstances save as required by applicable law.

#### **Qualified Person Statement**

The technical information in this news release was reviewed by Michael Parker, a Fellow of the Australian institute of Mining and Metallurgy (AuslMM), a qualified person as defined by National Instrument 43-101 (NI 43-101). Michael Parker is Executive Director of the Company.

#### **Competent Person Statement**

The information in this ASX release concerning Geological Information and Exploration Results is based on and fairly represents information compiled by Mr Michael Parker, a Competent Person who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Parker is Executive Director of Solis Minerals Ltd. and has sufficient experience which is relevant to the style of mineralisation and types of deposit under consideration and to the exploration activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australian Code for Reporting of Mineral Resources and Ore Reserves". Mr Parker consents to the inclusion in this



report of the matters based on information in the form and context in which it appears. Mr Parker has provided his prior written consent regarding the form and context in which the Geological Information and Exploration Results and supporting information are presented in this Announcement.



#### **APPENDIX 1**

Table 5: Geochemical sample assays from Chocolate Project.

| SAMPLE ID          | Easting | Northing | Point RI | Au<br>ppm | Cu<br>ppm | Cu<br>% |
|--------------------|---------|----------|----------|-----------|-----------|---------|
| 17199              | 262118  | 8060621  | 1107     | 0.03      | 458       | 0.05    |
| 17200              | 262095  | 8060396  | 1133     | 0.03      | 624       | 0.06    |
| 17379              | 263436  | 8061496  | 1114     | 0.03      | 13        | 0.00    |
| 17380              | 263437  | 8061523  | 1116     | 0.03      | 9         | 0.00    |
| 17381 <sup>7</sup> | 262100  | 8060641  | 1107     | 0.11      | 1435      | 0.14    |
| 17382 <sup>8</sup> | 262120  | 8060419  | 1132     | 0.17      | 3700      | 0.37    |
| 17383              | 264087  | 8059013  | 1073     | TBC       | 187       | 0.02    |
| 17389              | 265116  | 8059171  | 1003     | 0.01      | 22        | 0.00    |
| 17395              | 264513  | 8065899  | 1312     | 0.14      | 839       | 0.08    |
| 17396              | 264518  | 8065875  | 1310     | 0.23      | 1065      | 0.11    |
| 17397              | 264520  | 8065874  | 1309     | 2.47      | 49200     | 4.92    |
| 17398              | 264699  | 8065709  | 1267     | 0.01      | 64        | 0.01    |
| 17399              | 264769  | 8065628  | 1246     | 0.04      | 2430      | 0.24    |
| 17401              | 264926  | 8065712  | 1279     | 0.01      | 806       | 0.08    |
| 17402              | 267255  | 8063882  | 934      | 0.03      | 19200     | 1.92    |
| 17403              | 267503  | 8063784  | 809      | 0.01      | 1175      | 0.12    |
| 17404              | 267481  | 8063789  | 810      | 0.04      | 1565      | 0.16    |
| 17405              | 267586  | 8063782  | 761      | 0.07      | 1170      | 0.12    |
| 17406              | 265611  | 8060852  | 1027     | 0.05      | 22900     | 2.29    |
| 17407              | 265654  | 8060931  | 1023     | 0.08      | 1140      | 0.11    |
| 17408              | 265677  | 8060941  | 1021     | 0.21      | 2270      | 0.23    |
| 17409              | 265677  | 8060941  | 1021     | 0.37      | 464       | 0.05    |
| 17410              | 265689  | 8060980  | 1030     | 0.21      | 27800     | 2.78    |
| 17411              | 264728  | 8065680  | 1267     | 0.10      | 294       | 0.03    |
| 17418              | 261117  | 8059489  | 1041     | 0.01      | 5         | 0.00    |
| 17419              | 262110  | 8060341  | 1120     | 0.00      | 222       | 0.02    |
| 17420              | 262185  | 8060169  | 1102     | 0.00      | 193       | 0.02    |
| 17422              | 262208  | 8060116  | 1097     | 0.01      | 240       | 0.02    |
| 17423              | 262280  | 8059995  | 1112     | 0.60      | 7060      | 0.71    |
| 17424              | 262368  | 8059805  | 1092     | 0.00      | 23        | 0.00    |
| 17425              | 262288  | 8059784  | 1076     | 0.00      | 35        | 0.00    |
| 17426              | 262211  | 8059701  | 1071     | 0.01      | 152       | 0.02    |
| 17427              | 262655  | 8059723  | 1108     | 0.00      | 8         | 0.00    |
| 17428              | 262155  | 8059873  | 1127     | 0.04      | 17        | 0.00    |
| 17429              | 262160  | 8059898  | 1116     | 0.00      | 9         | 0.00    |
| 17430              | 262156  | 8059895  | 1119     | 0.01      | 3         | 0.00    |
| 17431              | 262151  | 8059895  | 1116     | 0.01      | 6         | 0.00    |
| 17432              | 264858  | 8065368  | 1208     | 0.03      | 699       | 0.07    |
| 17433              | 267403  | 8063619  | 850      | 0.01      | 229       | 0.02    |
| 17434              | 265726  | 8064417  | 1153     | 0.00      | 4         | 0.00    |

ASX:SLM announcement "Guaneros Drone Magnetometry and Geochemistry Identifies Targets", 17 September 2024.
 ASX:SLM announcement "Guaneros Drone Magnetometry and Geochemistry Identifies Targets", 17 September 2024.



| 17435 | 267125 | 8063074 | 1033 | 0.01 | 2500  | 0.25 |
|-------|--------|---------|------|------|-------|------|
| 17436 | 267788 | 8063113 | 761  | 0.06 | 12550 | 1.26 |
| 17437 | 262395 | 8060201 | 1102 | 0.00 | 133   | 0.01 |
| 17438 | 262096 | 8059429 | 1081 | 0.00 | 122   | 0.01 |
| 17439 | 262060 | 8059557 | 1067 | 0.01 | 38    | 0.00 |
| 17441 | 262037 | 8059587 | 1077 | 0.12 | 7     | 0.00 |
| 17442 | 262014 | 8059639 | 1069 | 0.02 | 333   | 0.03 |
| 17443 | 261980 | 8059710 | 1088 | 0.02 | 51    | 0.01 |
| 17444 | 261940 | 8059806 | 1099 | 0.01 | 17    | 0.00 |
| 17445 | 261881 | 8059902 | 1099 | 0.00 | 19    | 0.00 |
| 17446 | 261832 | 8059978 | 1113 | 0.01 | 37    | 0.00 |
| 17447 | 261806 | 8060082 | 1114 | 0.00 | 19    | 0.00 |
| 17448 | 261745 | 8060175 | 1112 | 0.00 | 414   | 0.04 |
| 17449 | 261707 | 8060251 | 1119 | 0.01 | 4     | 0.00 |
| 17450 | 261063 | 8059952 | 1084 | 0.01 | 35    | 0.00 |
| 17451 | 262036 | 8059847 | 1092 | 0.01 | 15    | 0.00 |
| 17452 | 262073 | 8059759 | 1082 | 0.01 | 15    | 0.00 |
| 17453 | 262100 | 8059685 | 1090 | 0.01 | 77    | 0.01 |
| 17454 | 262145 | 8059569 | 1090 | 0.00 | 46    | 0.00 |
| 17455 | 262283 | 8059574 | 1072 | 0.06 | 15    | 0.00 |
| 17456 | 262238 | 8059648 | 1074 | 0.12 | 6     | 0.00 |
| 17457 | 262150 | 8059810 | 1085 | 0.01 | 104   | 0.01 |
| 17458 | 262112 | 8059900 | 1088 | 0.03 | 5     | 0.00 |
| 17459 | 262061 | 8059995 | 1092 | 0.00 | 60    | 0.01 |
| 17460 | 262012 | 8060301 | 1106 | 0.01 | 179   | 0.02 |
| 17462 | 261970 | 8060389 | 1116 | 0.01 | 642   | 0.06 |
| 17463 | 262105 | 8060146 | 1110 | 0.00 | 10    | 0.00 |
| 17464 | 262136 | 8060031 | 1112 | 0.00 | 38    | 0.00 |
| 17465 | 262202 | 8059947 | 1113 | 0.01 | 27    | 0.00 |
| 17466 | 262243 | 8059864 | 1083 | 0.05 | 4     | 0.00 |
| 17467 | 262301 | 8059762 | 1081 | 0.01 | 28    | 0.00 |
| 17468 | 262326 | 8059711 | 1084 | 0.15 | 13    | 0.00 |
| 17469 | 262339 | 8059670 | 1085 | 0.00 | 5     | 0.00 |
| 17470 | 262366 | 8059598 | 1085 | 0.02 | 2     | 0.00 |
| 17471 | 262451 | 8059639 | 1092 | 0.00 | 6     | 0.00 |
| 17472 | 264674 | 8065339 | 1259 | 0.00 | 2040  | 0.20 |
| 17473 | 264673 | 8065352 | 1261 | 0.01 | 86    | 0.01 |
| 17474 | 264648 | 8065362 | 1260 | 0.01 | 618   | 0.06 |
| 17475 | 264841 | 8065273 | 1198 | 0.00 | 128   | 0.01 |
| 17476 | 266772 | 8063225 | 1101 | 0.00 | 462   | 0.05 |
| 17477 | 266622 | 8062899 | 940  | 0.05 | 1825  | 0.18 |
| 17478 | 266732 | 8062363 | 725  | 0.04 | 771   | 0.08 |
| 17479 | 267840 | 8062167 | 635  | 0.03 | 362   | 0.04 |
| 17481 | 265718 | 8061149 | 1016 | 0.66 | 2930  | 0.29 |
| 17482 | 265533 | 8061719 | 829  | 0.00 | 71    | 0.01 |
|       |        |         | 668  | 0.01 | -     | +    |



| 17484 | 267131 | 8062020 | 521  | 0.00 | 172   | 0.02 |
|-------|--------|---------|------|------|-------|------|
| 17485 | 267246 | 8062028 | 532  | 0.23 | 8120  | 0.81 |
| 17486 | 267231 | 8062023 | 533  | 0.41 | 10300 | 1.03 |
| 17487 | 267226 | 8062222 | 619  | 0.02 | 579   | 0.06 |
| 17488 | 267225 | 8062236 | 626  | 0.00 | 286   | 0.03 |
| 17489 | 262218 | 8059405 | 1077 | 0.01 | 7     | 0.00 |
| 17490 | 262692 | 8059092 | 1057 | 0.01 | 676   | 0.07 |
| 17491 | 262411 | 8059731 | 1101 | 0.01 | 16    | 0.00 |
| 17492 | 262349 | 8059900 | 1098 | 0.01 | 9     | 0.00 |
| 17493 | 262253 | 8060079 | 1099 | 0.00 | 55    | 0.01 |
| 17494 | 262162 | 8060265 | 1128 | 0.01 | 68    | 0.01 |
| 17495 | 262058 | 8060434 | 1087 | 0.01 | 22    | 0.00 |
| 17496 | 262079 | 8060670 | 1107 | 0.34 | 354   | 0.04 |
| 17497 | 262149 | 8060462 | 1097 | 0.01 | 3     | 0.00 |
| 17498 | 262190 | 8060397 | 1115 | 0.01 | 35    | 0.00 |
| 17499 | 262253 | 8060293 | 1107 | 0.01 | 114   | 0.01 |
| 17500 | 262302 | 8060198 | 1098 | 0.01 | 14    | 0.00 |
| 17502 | 262341 | 8060129 | 1099 | 0.01 | 17    | 0.00 |
| 17503 | 262372 | 8060040 | 1105 | 0.01 | 8     | 0.00 |
| 17504 | 262429 | 8059946 | 1109 | 0.04 | 12    | 0.00 |
| 17505 | 262468 | 8059851 | 1114 | 0.00 | 95    | 0.01 |
| 17506 | 262501 | 8059773 | 1106 | 0.00 | 4     | 0.00 |
| 17507 | 262568 | 8059686 | 1120 | 0.00 | 9     | 0.00 |
| 17508 | 262605 | 8059824 | 1116 | 0.01 | 7     | 0.00 |
| 17509 | 262555 | 8059902 | 1121 | 0.00 | 15    | 0.00 |
| 17510 | 262504 | 8060006 | 1118 | 0.01 | 10    | 0.00 |
| 17511 | 262468 | 8060078 | 1117 | 0.01 | 22    | 0.00 |
| 17512 | 262453 | 8060304 | 1097 | 0.01 | 21    | 0.00 |
| 17513 | 262497 | 8060221 | 1103 | 0.01 | 36    | 0.00 |
| 17514 | 262610 | 8060041 | 1111 | 0.01 | 11    | 0.00 |
| 17515 | 262620 | 8059948 | 1121 | 0.00 | 7     | 0.00 |
| 17516 | 262702 | 8059854 | 1117 | 0.00 | 9     | 0.00 |
| 17517 | 262744 | 8059773 | 1123 | 0.00 | 19    | 0.00 |
| 17518 | 262831 | 8059817 | 1129 | 0.00 | 10    | 0.00 |
| 17519 | 261658 | 8059446 | 1072 | 0.00 | 6     | 0.00 |
| 17521 | 261577 | 8059616 | 1074 | 0.00 | 6     | 0.00 |
| 17522 | 261484 | 8059812 | 1105 | 0.01 | 14    | 0.00 |
| 17523 | 261412 | 8059979 | 1084 | 0.01 | 10    | 0.00 |
| 17524 | 261281 | 8060192 | 1103 | 0.01 | 759   | 0.08 |
| 17525 | 261263 | 8060206 | 1110 | 0.00 | 155   | 0.02 |
| 17526 | 261109 | 8060054 | 1097 | 0.01 | 21    | 0.00 |
| 17527 | 261208 | 8059858 | 1074 | 0.01 | 77    | 0.01 |
| 17528 | 261433 | 8059784 | 1098 | 0.02 | 3     | 0.00 |
| 17529 | 261369 | 8059697 | 1089 | 0.01 | 73    | 0.01 |
| 17530 | 261373 | 8059543 | 1074 | 0.01 | 22    | 0.00 |
| 17531 | 261496 | 8059345 | 1056 | 0.01 | 16    | 0.00 |



| 17532 | 261558 | 8059162 | 1044 | 0.01 | 5    | 0.00 |
|-------|--------|---------|------|------|------|------|
| 17533 | 261948 | 8059366 | 1095 | 0.00 | 4    | 0.00 |
| 17534 | 261572 | 8060087 | 1108 | 0.00 | 32   | 0.00 |
| 17535 | 261638 | 8059860 | 1119 | 0.03 | 137  | 0.01 |
| 17536 | 261638 | 8059860 | 1119 | 0.01 | 1365 | 0.14 |
| 17537 | 261743 | 8059739 | 1109 | 0.01 | 590  | 0.06 |
| 17538 | 261824 | 8059554 | 1073 | 0.01 | 17   | 0.00 |
| 17539 | 260916 | 8060015 | 1110 | 0.01 | 72   | 0.01 |
| 17540 | 261159 | 8059604 | 1066 | 0.01 | 6    | 0.00 |
| 17542 | 261236 | 8059441 | 1063 | 0.01 | 35   | 0.00 |
| 17543 | 261377 | 8059122 | 1043 | 0.00 | 19   | 0.00 |
| 17544 | 260989 | 8059540 | 1066 | 0.01 | 2    | 0.00 |
| 17545 | 260959 | 8059558 | 1968 | 0.01 | 2    | 0.00 |
| 17546 | 261129 | 8059179 | 1067 | 0.01 | 73   | 0.01 |
| 17547 | 260490 | 8060671 | 1136 | 0.00 | 448  | 0.04 |
| 17548 | 260476 | 8060665 | 1138 | 0.01 | 25   | 0.00 |
| 17549 | 260497 | 8060606 | 1131 | 0.01 | 626  | 0.06 |
| 17550 | 260860 | 8059715 | 1095 | 0.01 | 167  | 0.02 |
| 17551 | 261233 | 8059018 | 1066 | 0.01 | 7    | 0.00 |



## **APPENDIX 2**

### JORC Code, 2012 Edition – Table 1

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.         In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.     </li> </ul> | 151 rock chip and grab samples were collected in 2024 from outcrops on an approximately 10% of the Chocolate Project area. Coordinate position and assay results of each sample are shown in Appendix 1 and in Tables 1 to 4 in the text of this ASX release. The samples are considered to be as representative as possible of the exposure, albeit by their nature, chip and grab samples do not reflect the overall grade of mineralisation encountered. Samples were representatively hand-cobbed to approximately 2.5kg mass for lab submission. |
| Drilling<br>techniques | Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No historic or new drilling has been<br>reported in this announcement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Drill sample recovery  | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No drilling reported herein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Logging                | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No drilling is reported in this announcement. Rock chip and grab samples were logged and rock type lithologies, oxidation and quantities of, and types of, mineralisation noted.                                                                                                                                                                                                                                                                                                                                                                      |
| Sub-sampling           | If core, whether cut or sawn and whether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rock chip and grab samples taken were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

www.solisminerals.com



| Criteria                                                                  | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| techniques and<br>sample<br>preparation                                   | <ul> <li>quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | considered to be of appropriate size and representativity to ascertain if copper and or precious metal mineralisation is present at the outcrops.  • Field duplicates were prepared across a range of samples and reported excellent correlation. The sample procedure and preparation is considered appropriate for the nature of the base metal mineralisation tested and its distribution throughout the sample.                                             |
| Quality of assay<br>data and<br>laboratory tests                          | The nature, quality and appropriateness     of the assaying and laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All rock chips and grab samples were assayed by ALS in Lima. Methods used were total assay of sample:  Preparation PREP31 Analysis Au-AA23 and ME-ICP61 Cu OG-62 for overlimit Cu >1% Pb OG-62 for overlimit Pb >1% Zn OG-62 for overlimit Zn >1% Ag OG-62 for overlimit Ag >100ppm OREAS standards, blanks, and field duplicates were inserted at appropriate intervals and reported within required ranges.                                                   |
| Verification of<br>Sampling and<br>assaying<br>Location of data<br>points | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource</li> </ul>                                                                                                                                                  | All Solis data is verified by the Competent Person including site visits to the Chocolate Project. All data is stored in an electronic database and sample rejects are stored in company warehouses. Competent Person and an alternative company director have visited the site during sampling and observed sampling techniques and quality control.  All sample locations were captured using a handheld GPS in WGS84 19S.  Rock and chip samples are points. |
| Data spacing<br>and distribution                                          | other locations used in Mineral Resource estimation.  Specification of the grid system used. Quality and adequacy of topographic control.  Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been                                                                                                                                                                                                            | No set sample spacing or pattern has been applied due to the preliminary nature of the sampling programme. Exposures of mineralisation or outcrop were tested where found and not on a regular pattern. The distribution of the mineralisation allows commentary on potential scope of mineralisation but does not imply continuity.                                                                                                                            |



| Criteria                                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Orientation of data<br>in relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | No bias has been introduced in current sampling.                                                                                                                                                                                                                                                                     |
| Sample security                                                  | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                      | All samples are bagged onsite under supervision of Solis staff, all bags are then sealed and couriered to the relevant laboratories with all relevant submission documentation. All samples once received are logged into the lab and notice of each sample received is sent and cross checked with sample dispatch. |
| Audits or reviews                                                | The results of any audits or reviews of<br>sampling techniques and data.                                                                                                                                                                                                                                                                                                                           | <ul> <li>There have been no detailed external audits or reviews undertaken.</li> <li>Solis has conducted an internal technical review and site visit by the Competent Person</li> </ul>                                                                                                                              |



# Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul>                                                                                                                                                                | <ul> <li>The Chocolate Project is 100% Solis Minerals owned. 5,700Ha of 6,100 Ha tenements have been granted. The remaining 400Ha is expected to be granted in due course.</li> <li>There are no communities in the area.</li> <li>There are no known archaeological or other sensitive sites.</li> </ul>                                               |
| Exploration done by other parties                | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>The Chocolate property has had no known systematic exploration carried out by previous owners.</li> <li>No known records of previous drilling exist in the mining ministry.</li> </ul>                                                                                                                                                         |
| Geology                                          | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>The area is known for the occurrence of porphyry Cu deposits. Particularly Tia Maria and Zafranal projects some 70-100km to north of Chocolate.</li> <li>Ilo Este, 7km SE, is an advanced exploration project with established porphyry Cu mineralisation. Ilo Este has characteristics of geology considered similar to Chocolate.</li> </ul> |
| Drill hole<br>Information                        | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:  easting and northing of the drill hole collar  elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar  dip and azimuth of the hole  hole length  If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | No drillhole data is reported in this release                                                                                                                                                                                                                                                                                                           |



| Criteria                                                                     | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data<br>aggregation<br>methods                                               | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul> | Rock samples for geochemical analysis are considered point samples with no implication of lateral or depth continuity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</li> </ul>                                                                                                                                                                             | Rock samples have no mineralisation width<br>apart from vein widths generally noted in<br>the tables in this ASX release. Vein widths<br>do not imply volume or continuity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Diagrams                                                                     | <ul> <li>Appropriate maps and sections (with<br/>scales) and tabulations of intercepts<br/>should be included for any significant<br/>discovery being reported These should<br/>include, but not be limited to a plan view of<br/>drill hole collar locations and appropriate<br/>sectional views.</li> </ul>                                                                                                                                                                                                                                                                                   | <ul> <li>The Company has included various maps and figures showing the location of sampled outcrop.</li> <li>GPS coordinates of rock and chip samples are provided in Appendix 1 and subsets in Tables 1-4.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Balanced<br>reporting                                                        | <ul> <li>Where comprehensive reporting of all<br/>Exploration Results is not practicable,<br/>representative reporting of both low and<br/>high grades and/or widths should be<br/>practiced avoiding misleading reporting of<br/>Exploration Results.</li> </ul>                                                                                                                                                                                                                                                                                                                               | Assay results for Au and Cu are presented in total for work related to this release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Other<br>substantive<br>exploration data                                     | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.                                                                                                                                                                                                           | <ul> <li>The Chocolate area was substantially covered by a drone magnetometry survey in August 2024 undertaken by Real Eagle of Peru.</li> <li>A reprocessing of this data using Magnetic Vector Inversion techniques was carried out by Fathom Geophysics of the USA.</li> <li>MVI is a method used to directly model the vector of magnetization based on anomalous Total Field Magnetic Intensity data. The method allows the modelling optimization process to orient the direction of magnetization to best fit the observed data. Outputs of MVI are used to model subsurface geology using magnetic susceptibility and remanent magnetism.</li> </ul> |
| Further work                                                                 | <ul> <li>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                                                                                                                                                                                           | <ul> <li>IP surveys are being evaluated for the anomalous areas.</li> <li>Untested areas will be mapped and sampled, if appropriate. Further IP surveys may be planned.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |